10.6. CROUT'S METHOD

We shall explains this method by considering three equations. Let us consider the equation as follows :

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{array}\right\}
$$

The argumented matrix of (1) is

$$
(A \mid B)=\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \tag{2}\\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right|
$$

Now, we consider derived matrix as follows :

$$
\left(A^{\prime} \mid B^{\prime}\right)=\left|\begin{array}{llll}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} & b_{1}^{\prime} \tag{3}\\
a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} & b_{2}^{\prime} \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime} & b_{3}^{\prime}
\end{array}\right|
$$

Step I. First column of (3) is same as first column of (2)

$$
\begin{aligned}
& a_{11}^{\prime}=a_{11}, a_{21}^{\prime}=a_{21}, a_{31}^{\prime}=a_{31} \\
& a_{i 1}^{\prime}=a_{i 1} \text { for all } i=1,2,3
\end{aligned}
$$

Step II. Elements of first row to the right of first column in (3) are given by

$$
a_{12}^{\prime}=\frac{a_{12}}{a_{11}}, a_{13}^{\prime}=\frac{a_{13}}{a_{11}}, b_{1}^{\prime}=\frac{b_{1}}{a_{11}}
$$

i.e.,

$$
a_{1 j}^{\prime}=\frac{a_{1 j}}{a_{11}}, j=2,3
$$

Step III. Elements of second column except $\alpha^{\prime}{ }_{12}$ are given by i.e.,

$$
\begin{aligned}
& a_{22}^{\prime}=a_{22}-a_{12}^{\prime} a_{21}^{\prime} \\
& a_{32}^{\prime}=a_{32}-a_{12}^{\prime} a_{31}^{\prime} \\
& a_{j 2}^{\prime}=a_{j 2}-a_{12}^{\prime} a_{j 1}^{\prime}, j=2,3
\end{aligned}
$$

Step IV. Elements of second row except $a_{21}^{\prime}, a^{\prime}{ }_{22}$ are given by

$$
\begin{aligned}
& a_{23}^{\prime}=\frac{a_{23}-a_{13}^{\prime} a_{21}^{\prime}}{a_{22}^{\prime}}, b_{2}^{\prime}=\frac{b_{2}-b_{1}^{\prime} a_{21}^{\prime}}{a_{22}^{\prime}} \\
& a_{2 j}^{\prime}=\frac{a_{2 j}-a_{1 j}^{\prime} a_{21}^{\prime}}{a_{22}^{\prime}}, j=3
\end{aligned}
$$

Step V. Elements of third column except $a^{\prime}{ }_{13}, a^{\prime}{ }_{23}$ is given by

$$
a_{33}^{\prime}=a_{33}-a_{31}^{\prime} a_{13}^{\prime}-a_{32}^{\prime} a_{23}^{\prime}
$$

Step VI. Element of third row except $a_{31}^{\prime}, a_{32}^{\prime}, a_{33}^{\prime}$ is

$$
b_{3}^{\prime}=\frac{b_{3}-b_{2}^{\prime} a_{32}^{\prime}-b_{1}^{\prime} a_{31}^{\prime}}{a_{33}^{\prime}}
$$

Thus, the solution of the given equations is given by

$$
x_{3}=b_{3}^{\prime}, x_{2}=b_{2}^{\prime}-a_{2 x^{\prime}} x_{3}, x_{1}=b_{1}^{\prime}-a_{13}^{\prime} x_{3}-a_{13}^{\prime} x_{2}
$$

This Crout's method is explained properly below in which the coefficient a^{\prime} and constants b^{\prime} are discussed how they are obtained.

Crout established a method in which Gauss elimination is often performed. Let us consider a system of three equations

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{29} x_{3}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{array}\right\}
$$

Above equations can be written as

$$
A X=\boldsymbol{B}
$$

$$
\boldsymbol{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \tag{2}\\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right], \boldsymbol{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$\therefore \quad$ Augmented matrix

$$
(A \mid B)=\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \tag{3}\\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right|
$$

Equation (1) becomes after Gauss elimination process as follows :

$$
\left.\begin{array}{rl}
x_{1}+a_{12}^{\prime} x_{2}+a_{13}^{\prime} x_{3} & =b_{1}^{\prime} \tag{4}\\
x_{2}+a_{2 x_{3}^{\prime}}^{\prime} x_{3} & =b_{2}^{\prime} \\
x_{3} & =b_{3}^{\prime}
\end{array}\right\}
$$

Now the first equation of (1) is obtained by multiplication of first equation in (4) by a constant a_{11}^{\prime}, and second equation of (1) is obtained through multiplication of first and second equation in (4) by a_{21}^{\prime} and a_{22}^{\prime} respectively, and adding. Similarly, the third equation of (1) is obtained through multiplication of first, second and third equations in (4) by $a_{31}^{\prime}, a_{32}^{\prime}$ and a_{33}^{\prime} and then adding. Thus, we get the following equations

$$
\left.\begin{array}{rl}
a_{11}^{\prime} b_{1}^{\prime} & =b_{1} \\
a_{21}^{\prime} b_{1}^{\prime}+a_{22}^{\prime} b_{2}^{\prime} & =b_{2} \tag{5}\\
a_{31}^{\prime} b_{1}^{\prime}+a_{32}^{\prime} b_{2}^{\prime}+a_{33}^{\prime} b_{3}^{\prime} & =b_{3}
\end{array}\right\} .
$$

Let us introduce the matrices P and Q as follows :

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
a_{11}^{\prime} & 0 & 0 \\
a_{21}^{\prime} & a_{22}^{\prime} & 0 \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right], \quad \boldsymbol{Q}=\left[\begin{array}{ccc}
0 & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & 0 & a_{33}^{\prime} \\
0 & 0 & 0
\end{array}\right]
$$

$$
\boldsymbol{P}+\boldsymbol{Q}=\boldsymbol{A}^{\prime} \text { (say). }
$$

Now equation (1), (4) and (5) take the form

$$
\left.\begin{array}{rl}
\boldsymbol{A} \boldsymbol{X} & =\boldsymbol{B} \tag{6}\\
(\boldsymbol{Q}+\boldsymbol{I}) \boldsymbol{X} & =\boldsymbol{B}^{\prime} \\
\boldsymbol{P} \boldsymbol{B}^{\prime} & =\boldsymbol{B}
\end{array}\right\} .
$$

From (6), we obtain $\boldsymbol{P}(\boldsymbol{Q}+\boldsymbol{I}) \boldsymbol{X}=\boldsymbol{A} \boldsymbol{X}$
and hence

$$
P(\boldsymbol{Q}+\boldsymbol{I})=\boldsymbol{A}
$$

Augmenting the matrix $(\boldsymbol{Q}+\boldsymbol{I})$ with new column \boldsymbol{B}^{\prime} and augmenting the $\operatorname{matrix} \boldsymbol{A}$ by column B. Thus, we get

$$
\left[\begin{array}{ccc}
a_{\prime_{11}^{\prime}}^{\prime} & 0 & 0 \\
a_{21}^{\prime} & a_{22}^{\prime} & 0 \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
1 & a_{12}^{\prime} & a_{13}^{\prime} & b_{1}^{\prime} \\
0 & 1 & a_{23}^{\prime} & b_{2}^{\prime} \\
0 & 0 & 1 & b_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right]
$$

From above equations, we get

$$
\begin{aligned}
& a_{11}^{\prime}=a_{11}, a_{21}^{\prime}=a_{21}, a_{31}^{\prime}=a_{31} \\
& a_{12}^{\prime}=\frac{a_{12}}{a_{11}^{\prime}}=\frac{a_{12}}{a_{11}}, a_{13}^{\prime}=\frac{a_{13}}{a^{\prime}}=\frac{a_{13}}{a_{11}}, b^{\prime}{ }_{1}=\frac{b_{1}}{a_{11}} \\
& a_{22}^{\prime}=a_{22}-a_{21}^{\prime} \cdot a_{12}^{\prime}, \quad a_{23}^{\prime}=\frac{1}{a_{22}^{\prime}}\left(a_{23}-a_{21}^{\prime}{ }_{21}{ }_{13}\right) \\
& a^{\prime}{ }_{21} b^{\prime}{ }_{1}+a^{\prime}{ }_{22} b^{\prime}{ }_{2}=b_{2} \\
& b_{2}^{\prime}=\frac{b_{2}-a_{21}^{\prime} b_{1}^{\prime}}{a_{22}^{\prime}} \\
& a^{\prime}{ }_{31} a^{\prime}{ }_{12}+a^{\prime}{ }_{32}=a_{32} \\
& a_{32}^{\prime}=a_{32}-a_{31}^{\prime} a_{12}^{\prime} \\
& a^{\prime}{ }_{31} a^{\prime}{ }_{13}+a^{\prime}{ }_{32} a^{\prime}{ }_{23}+a^{\prime}{ }_{33}=a_{33} \\
& a^{\prime}{ }_{33}=a_{33}-a^{\prime}{ }_{31} a^{\prime}{ }_{13}-a_{32}^{\prime}{ }_{32} a_{23} \\
& a^{\prime}{ }_{31} b^{\prime}{ }_{1}+a^{\prime}{ }_{32} b^{\prime}{ }_{2}+a^{\prime}{ }_{33} b^{\prime}{ }_{3}=b_{3} \\
& b_{3}^{\prime}=\frac{b_{3}-a_{31}^{\prime} b_{1}^{\prime}-a_{32}^{\prime} b_{2}^{\prime}}{a_{33}^{\prime}} .
\end{aligned}
$$

Thus, after getting all a^{\prime} and b^{\prime}, with the help of (4), we get the solution, given by

$$
x_{3}=b^{\prime}{ }_{3}, x_{2}=b_{2}^{\prime}-a_{23}^{\prime} x_{3}, x_{1}=b_{1}^{\prime}-a_{12}^{\prime} x_{2}-a_{13}^{\prime} x_{3}
$$

SOLVED EXAMPLES

Example 1. Solve the following equations by Crout's method:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
3 x_{1}+x_{2}-3 x_{3} & =5 \\
x_{1}-2 x_{2}-5 x_{3} & =10 .
\end{aligned}
$$

Solution. Above equation can be written as

$$
\begin{equation*}
A \boldsymbol{X}=\boldsymbol{B} \tag{1}
\end{equation*}
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & 1 & -3 \\
1 & -2 & -5
\end{array}\right], \boldsymbol{X}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{r}
1 \\
5 \\
10
\end{array}\right] .
$$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 1 & 1 \\
3 & 2 & -3 \\
1 & -2 & -5
\end{array}\right]
$$

Now derived matrix is given by
where

$$
a_{11}^{\prime}=a_{11}=1, a_{21}^{\prime}=a_{21}=3, a_{31}^{\prime}=a_{31}=1
$$

and

$$
a_{12}^{\prime}=\frac{a_{12}}{a_{11}}=\frac{1}{1}=1, a_{13}^{\prime}=\frac{a_{13}}{a_{11}}=\frac{1}{1}=1, b_{1}^{\prime}=\frac{b_{1}}{b_{11}}=\frac{1}{1}=1
$$

and
and

$$
\left[\begin{array}{llll}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} & b_{1}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} & b_{2}^{\prime} \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime} & b_{3}^{\prime}
\end{array}\right]
$$

$$
a_{22}^{\prime}=a_{22}-a_{12}^{\prime} \cdot a_{21}^{\prime}=1-1 \cdot 3=1-3=-2
$$

$$
a_{32}^{\prime}=a_{32}-a_{12}^{\prime} \cdot a_{31}^{\prime}=-2-1(1)=-3
$$

$$
a_{23}^{\prime}=\frac{a_{23}-a_{13}^{\prime} a_{21}^{\prime}}{a_{22}^{\prime}}=\frac{-3-3}{-2}=3
$$

$$
b_{2}^{\prime}=\frac{b_{2}-b_{21}^{\prime} b_{1}^{\prime}}{a_{22}^{\prime}}=\frac{5-3}{-2}=-1
$$

$$
a_{33}^{\prime}=a_{33}-a_{31}^{\prime} a_{13}^{\prime}-a_{32}^{\prime} a_{23}^{\prime}=-5-1+9=3
$$

$$
b_{3}^{\prime}=\frac{b_{3}-a_{31}^{\prime} b_{1}^{\prime}-a_{32}^{\prime} b_{2}^{\prime}}{a_{33}^{\prime}}=\frac{10-1-3}{3}=\frac{6}{3}=2
$$

Thus, the solution is
and

$$
x_{3}=b_{3}^{\prime}=2
$$

and

$$
\begin{aligned}
x_{2} & =b_{2}^{\prime}-a_{23}^{\prime} x_{3}=-1-3(2)=-7 \\
x_{1} & =b_{1}^{\prime}-a_{12}^{\prime} x_{2}-a_{13}^{\prime} x_{3} \\
& =1-1(-7)-1(2)=1+7-2=6 \\
x_{1} & =6, x_{2}=-7, x_{3}=2 .
\end{aligned}
$$

Hence
Example 2. Solve the following equations by Crout's method:

$$
\begin{gathered}
2 x_{1}+3 x_{2}+x_{3}=-1 \\
5 x_{1}+x_{2}+x_{3}=9 \\
3 x_{1}+2 x_{2}+4 x_{3}=11
\end{gathered}
$$

Solution. Above equations can be written as
where

$$
\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}
$$

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 3 & 1 \\
5 & 1 & 1 \\
3 & 2 & 4
\end{array}\right], \boldsymbol{X}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{r}
-1 \\
9 \\
11
\end{array}\right]
$$

Now derived matrix is given by

$$
\left[\begin{array}{llll}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} & b_{1}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} & b_{2}^{\prime} \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime} & b_{3}^{\prime}
\end{array}\right]
$$

$$
(A \mid B)=\left[\begin{array}{rrrr}
2 & 3 & 1 & -1 \\
5 & 1 & 1 & 9 \\
3 & 2 & 4 & 1
\end{array}\right]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right]
$$

Now find $a_{i j}^{\prime}$ as follows :

$$
=\frac{11+\frac{3}{2}-\frac{115}{26}}{\frac{40}{13}}=\frac{\frac{(286+39-115)}{26}}{\frac{40}{13}}=\frac{\frac{210}{26}}{\frac{40}{13}}=\frac{210}{80}
$$

Thus solution is

$$
b_{3}^{\prime}=\frac{21}{8}
$$

$$
x_{3}=b_{3}^{\prime}=\frac{21}{8}
$$

$$
\begin{aligned}
& a_{11}^{\prime}=a_{11}=2, a_{21}^{\prime}=a_{21}=5, a_{31}^{\prime}=a_{31}=3 \\
& a_{12}^{\prime}=\frac{a_{12}}{a_{11}}=\frac{3}{2}, a_{13}^{\prime}=\frac{a_{13}}{a_{11}}=\frac{1}{2}, b_{1}^{\prime}=\frac{b_{1}}{a_{11}}=\frac{-1}{?} \\
& a_{22}^{\prime}=a_{22}-a_{12}^{\prime} a_{21}^{\prime} \\
& =1-\frac{3}{2}(5)=1-\frac{15}{2}=-\frac{13}{2} \\
& a_{32}^{\prime}=a_{32}-a_{12}^{\prime} a_{31}^{\prime} \\
& =2-\frac{3}{2}(3)=2-\frac{9}{2}=-\frac{5}{2} \\
& a_{23}^{\prime}=\frac{a_{23}-a_{13}^{\prime} a_{21}^{\prime}}{a_{22}^{\prime}}=\frac{1-\frac{1}{2}(5)}{-\frac{13}{2}}=\frac{3}{13} \\
& b_{2}^{\prime}=\frac{b_{2}-b_{21}^{\prime} b_{1}^{\prime}}{a_{22}^{\prime}}=\frac{9-5\left(-\frac{1}{2}\right)}{-\frac{13}{2}}=\frac{\frac{23}{2}}{-\frac{13}{2}}=-\frac{23}{13} \\
& a_{33}^{\prime}=a_{33}-a^{\prime}{ }_{31} a_{13}^{\prime}-a^{\prime}{ }_{32} a^{\prime}{ }_{23} \\
& =4-3\left(\frac{1}{2}\right)-\left(-\frac{5}{2}\right)\left(\frac{3}{13}\right)=4-\frac{3}{2}+\frac{15}{26} \\
& =\frac{104-39+15}{26}=\frac{80}{26}=\frac{40}{13} \\
& b_{3}^{\prime}=\frac{b_{3}-a_{31}^{\prime} b_{1}^{\prime}-a_{32}^{\prime} b_{2}^{\prime}}{a_{33}^{\prime}} \\
& =\frac{11-3\left(-\frac{1}{2}\right)-\left(-\frac{5}{2}\right)\left(-\frac{23}{13}\right)}{\frac{43}{13}}
\end{aligned}
$$

$$
\begin{aligned}
x_{2} & =b_{2}^{\prime}--a_{23}^{\prime} x_{3} \\
& =-\frac{23}{13}-\left(\frac{3}{13}\right) \frac{21}{8}=-\frac{19}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{1} & =b^{\prime}{ }_{1}-a_{12}^{\prime} x_{2}--a_{13}^{\prime} x_{3} \\
& =-\frac{1}{2}-\frac{3}{2}\left(-\frac{19}{83}\right)-\frac{1}{2}\left(\frac{21}{8}\right) \\
& =-\frac{1}{2}+\frac{57}{16}-\frac{21}{16}=\frac{-8+57-221}{16} \\
& =\frac{14}{8}=\frac{7}{4} .
\end{aligned}
$$

Hence, the solution is

$$
x_{1}=\frac{7}{4}, x_{2}=-\frac{19}{8}, x_{3}=\frac{21}{8} .
$$

